pku2528
题目描述
The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:
- Every candidate can place exactly one poster on the wall.
- All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).
- The wall is divided into segments and the width of each segment is one byte.
- Each poster must completely cover a contiguous number of wall segments.
They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.
Your task is to find the number of visible posters when all the posters are placed given the information about posters’ size, their place and order of placement on the electoral wall.
Input
The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,… , ri.
Output
For each input data set print the number of visible posters after all the posters are placed.
题解
区间染色的变形,不过比区间染色问题要难一些~
用到区间染色成段更新,hash,离散化
题意:在墙上贴海报,海报可以互相覆盖,问最后可以看见几张海报
思路:这题数据范围很大,直接搞超时+超内存,需要离散化:
离散化简单的来说就是只取我们需要的值来用,比如说区间[1000,2000],[1990,2012] 我们用不到[-∞,999][1001,1989][1991,1999][2001,2011][2013,+∞]这些值,所以我只需要1000,1990,2000,2012就够了,将其分别映射到0,1,2,3,在于复杂度就大大的降下来了
所以离散化要保存所有需要用到的值,排序后,分别映射到1~n,这样复杂度就会小很多很多
而这题的难点在于每个数字其实表示的是一个单位长度(并且一个点),这样普通的离散化会造成许多错误poj这题数据奇弱)
给出下面两个简单的例子应该能体现普通离散化的缺陷:
1-10 1-4 5-10
1-10 1-4 6-10
为了解决这种缺陷,我们可以在排序后的数组上加些处理,比如说[1,2,6,10], 如果相邻数字间距大于1的话,在其中加上任意一个数字,比如加成[1,2,3,6,7,10],然后再做线段树就好了.
假设给定的区间是[1,3],[6,1000],我们可以如下离散
离散前坐标:1 3 6 1000
离散后坐标:1 2 3 4
于是我们就减少了没必要的搜索过程和内存空间。有个建树时的小技巧,因为我建树的每个节点是开区间到闭区间,即[a,b)。于是在读入数据的时候我就可以把b的值加一,这样就很好的处理了题目中可能出现的[a,a]相等值的区间(也就是对一个点的处理)。
根据这一点可以更改下面的程序的cout,不用加1,而在输入值时区间右边界加1就行
现在做个小小的总结:
1.线段树不会有固定的模板,只是种思想,一般可能都需要离散化。
2.分成建树,染色,判断统计3个步骤,可能其他大致也就3个类似的步骤。
3.如果有单个点的情况,建区间时可以把右端点+1处理。
/线段树/1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32#include <iostream>
#include <algorithm>
using namespace std;
const int Max=20010;
struct point//记录n个区间
{
int l;
int r;
}a[Max];
struct Node
{
int l;
int r;
int mid;
int color;
}tree[Max*4];
int t,n;
int hash[Max*2];//哈希是种态度 = =
bool used[Max];//最后统计单颜色的区间
void make(int l,int r,int num)//构建线段树
{
tree[num].l = l;
tree[num].r = r;
tree[num].mid=(l+r)/2;
tree[num].color=0;
if(l+1!=r)//不是叶区间
{
make(l,tree[num].mid,num*2);
make(tree[num].mid,r,num*2+1);
return;
}
}
/染色函数/1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28void insert(int num,int l,int r,int c)//节点编号num. 要染色的区间
{ //的左右端点l,r和颜色c
if(tree[num].color!=c)//区间的颜色不是所要染得色c
{ //如果是c,说明已经上满了c
if(tree[num].l==l&&tree[num].r==r)//区间完全覆盖,给该区间染上c
{
tree[num].color=c;
return;
}
//以下是区间未被完全覆盖的情况
if(tree[num].color>=0)//区间未被上色或者之上一种色(这个颜色是上满的)
{ //那么其子节点 也是这个颜色
tree[2*num].color=tree[num].color;
tree[2*num+1].color=tree[num].color;
tree[num].color=-1;//由于一开始有颜色(或者没有)
//上色的c只占区间的一部分,所以是杂色
}
if(r<=tree[num].mid)//染色区间在该区间的左子区间
insert(2*num,l,r,c);
else if(l>=tree[num].mid)//染色区间在该区间的右子区间
insert(2*num+1,l,r,c);
else//染色区间横跨区间的左右区间
{
insert(num*2,l,tree[num].mid,c);
insert(num*2+1,tree[num].mid,r,c);
}
}
}
/统计函数:统计最后的颜色区间/1
2
3
4
5
6
7
8
9
10
11
12
13void count(int num)
{
if(tree[num].color>0)
{
used[tree[num].color]=true;
return ;
}
if(tree[num].l+1!=tree[num].r)
{
count(2*num);
count(2*num+1);
}
}
/查找函数:val是未离散化前面的值。函数返回的是其在离散化后的区间的编号/1
2
3
4
5
6
7
8
9
10
11
12
13
14int b_search(int l,int r,int val)
{
while(l<=r)
{
int mid=(l+r)/2;
if(hash[mid]==val)
return mid;
else if(hash[mid]>val)
r=mid-1;
else
l=mid+1;
}
return -1;
}
/main函数/1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35int main()
{
scanf("%d",&t);
for(int i=1;i<=t;i++)
{
scanf("%d",&n);
memset(used,false,sizeof(used));
for(int j=1;j<=n;j++)
{
scanf("%d %d",&a[j].l,&a[j].r);
++a[j].r;
hash[2*j-1]=a[j].l;
hash[2*j]=a[j].r;
}
sort(hash+1,hash+1+2*n);
int index=2;
for(int j=1;j<2*n;j++)
if(hash[j]!=hash[j+1])
hash[index++]=hash[j+1];
make(1,index-1,1);
for(int j=1;j<=n;j++)
{
int lset=b_search(1,index-1,a[j].l);
int rset=b_search(1,index-1,a[j].r);
insert(1,lset,rset,j);
}
count(1);
int ans=0;
for(int j=0;j<Max;j++)
if(used[j])
ans++;
cout<<ans<<endl;
}
return 0;
}
扫码关注下面二维码,干货不断: